Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
2.
Appl Clin Genet ; 16: 41-52, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051256

RESUMEN

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are genetic imprinting disorders resulting from absent or reduced expression of paternal or maternal genes in chromosome 15q11q13 region, respectively. The most common etiology is deletion of the maternal or paternal 15q11q13 region. Methylation is the first line for molecular diagnostic testing; MS-MLPA is the most sensitive test. The molecular subtype of PWS/AS provides more accurate recurrence risk information for parents and for the individual affected with the condition. Management should include a multidisciplinary team by various medical subspecialists and therapists. Developmental and behavioral management of PWS and AS in infancy and early childhood includes early intervention services and individualized education programs for school-aged children. Here, we compare and discuss the mechanisms, pathophysiology, clinical features, and management of the two imprinting disorders, PWS and AS.

4.
Mol Genet Genomic Med ; 10(10): e2018, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35929060

RESUMEN

BACKGROUND: Angelman syndrome (AS) occurs due to a lack of expression or function of the maternally inherited UBE3A gene. Individuals with AS typically have significant developmental delay, severe speech impairment with absent to minimal verbal language, gait abnormalities including ataxia, and an incongruous happy demeanor. The majority of individuals with AS also have seizures and microcephaly. Some individuals with mosaic AS have been reported to have expressive language and milder levels of developmental delay. CASE REPORT: We report a male patient presenting with mild to moderate intellectual disability, hyperphagia, obesity, and the ability to communicate verbally. His phenotype was suggestive of Prader-Willi syndrome. However, methylation testing was positive for Angelman syndrome and additional methylation specific multiplex ligation-dependent amplification (MS-MLPA) study revealed low-level mosaicism for AS. CONCLUSION: A broader phenotypic spectrum should be considered for AS as patients with atypical presentations may otherwise elude diagnosis.


Asunto(s)
Síndrome de Angelman , Síndrome de Prader-Willi , Síndrome de Angelman/diagnóstico , Síndrome de Angelman/genética , Impresión Genómica , Humanos , Lenguaje , Masculino , Mosaicismo , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética
5.
BMJ Case Rep ; 15(7)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882436

RESUMEN

Fragile X (FXS) and Turner (TS) syndromes are X-chromosome-associated disorders. Herein, we report the case of a girl in middle childhood with bicuspid aortic valve in infancy, growth failure, global developmental delay (GDD), visual problems, and coexisting attention-deficit/hyperactivity and anxiety disorders. A high-resolution karyotype in 20 cells revealed 46,X,Idic(X)(p11.21)[19]/45,X[1], suggestive of variant TS. Given her atypical phenotype, subsequent DNA testing was performed. Four FMR1 cytosine-guanine-guanine repeats (30, 410, 580 and 800) were identified, confirming the additional FXS diagnosis. This case study highlights the importance of additional genetic testing in individuals with atypical variant TS, such as unexplained GDD and distinct facial characteristics. The additional FXS diagnosis prompted new therapeutic development for the patient to advance precision healthcare.


Asunto(s)
Trastornos de los Cromosomas , Síndrome del Cromosoma X Frágil , Síndrome de Turner , Niño , Aberraciones Cromosómicas , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Guanina , Humanos , Síndrome de Turner/complicaciones , Síndrome de Turner/diagnóstico , Síndrome de Turner/genética , Cromosoma X
6.
Am J Ophthalmol Case Rep ; 27: 101613, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35756836

RESUMEN

Purpose: To illustrate the importance of systemic evaluation in retinal dystrophies through examples of Alstrom syndrome, Bardet Biedl syndrome, and Refsum disease. Observations: Detailed eye evaluations, including visual acuity, visual field, slit lamp examination, and indirect ophthalmoscopy were performed. Retinal imaging included fundus photography and spectral domain optical coherence tomography (SD-OCT). Functional testing of the retina was done using full field electroretinography (ffERG). In addition, molecular genetic testing was performed using a ciliopathy panel, a retinal dystrophy panel, and whole genome sequencing (WGS).We report three individuals who presented with vision concerns first to ophthalmology, noted to have retinal dystrophy, and then referred to genomic medicine for genetic testing. Additional evaluation led to suspicion of specific groups of systemic disorders and guided appropriate genetic testing. The first individual presented with retinal dystrophy, obesity, and short stature with no reported neurocognitive deficits. Genetic testing included a ciliopathy panel that was negative followed by WGS that identified biallelic variants in ALMS: a novel frame-shift pathogenic variant c.6525dupT (p.Gln2176Serfs*17) and a rare nonsense pathogenic variant c.2035C > T (p.Arg679Ter) consistent with Alstrom syndrome. The second individual presented with retinal dystrophy, central obesity, and mild neurocognitive deficits. A ciliopathy genetic testing panel identified a homozygous pathogenic variant in BBS7: c.389_390del (p.Asn130Thrfs*4), confirming the diagnosis of Bardet Biedl syndrome. The third individual presented with progressive vision loss due to retinitis pigmentosa, anosmia, hearing loss, and shortened metatarsals and digits. Genetic testing identified two variants in PHYH: c.375_375del (p.Glu126Argfs*2) a pathogenic variant and c.536A > G (p.His179Arg), a variant of uncertain significance (VUS), suggestive of Refsum disease. Additional biochemical testing revealed markedly elevated phytanic acid with a low concentration of pristanic acid and normal concentrations of very long-chain fatty acids (C22:0, C24:0, C26:0), a pattern consistent with a diagnosis of Refsum disease. Conclusions and importance: In individuals who present with retinal dystrophy to ophthalmologists, additional systemic manifestations such as sensorineural hearing loss, anosmia, or polydactyly, should be sought and a positive history or examination finding should prompt an immediate referral to a clinical geneticist for additional evaluation and appropriate genetic testing. This facilitates pre-test genetic counseling and allows for more accurate diagnosis, prognosis, and management of affected individuals along with better recurrence risk estimates for family members. Identification of an underlying etiology also enhances the understanding of the pathophysiology of disease and expands the genotypic and phenotypic spectrum. Ultimately, successful recognition of these diseases facilitates development of targeted therapies and surveillance of affected individuals.

7.
Genet Med ; 24(7): 1567-1582, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35482014

RESUMEN

PURPOSE: Diphthamide is a post-translationally modified histidine essential for messenger RNA translation and ribosomal protein synthesis. We present evidence for DPH5 as a novel cause of embryonic lethality and profound neurodevelopmental delays (NDDs). METHODS: Molecular testing was performed using exome or genome sequencing. A targeted Dph5 knockin mouse (C57BL/6Ncrl-Dph5em1Mbp/Mmucd) was created for a DPH5 p.His260Arg homozygous variant identified in 1 family. Adenosine diphosphate-ribosylation assays in DPH5-knockout human and yeast cells and in silico modeling were performed for the identified DPH5 potential pathogenic variants. RESULTS: DPH5 variants p.His260Arg (homozygous), p.Asn110Ser and p.Arg207Ter (heterozygous), and p.Asn174LysfsTer10 (homozygous) were identified in 3 unrelated families with distinct overlapping craniofacial features, profound NDDs, multisystem abnormalities, and miscarriages. Dph5 p.His260Arg homozygous knockin was embryonically lethal with only 1 subviable mouse exhibiting impaired growth, craniofacial dysmorphology, and multisystem dysfunction recapitulating the human phenotype. Adenosine diphosphate-ribosylation assays showed absent to decreased function in DPH5-knockout human and yeast cells. In silico modeling of the variants showed altered DPH5 structure and disruption of its interaction with eEF2. CONCLUSION: We provide strong clinical, biochemical, and functional evidence for DPH5 as a novel cause of embryonic lethality or profound NDDs with multisystem involvement and expand diphthamide-deficiency syndromes and ribosomopathies.


Asunto(s)
Metiltransferasas , Trastornos del Neurodesarrollo , Adenosina Difosfato/metabolismo , Animales , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Metiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome
8.
Am J Med Genet A ; 188(6): 1915-1927, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35266292

RESUMEN

RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.


Asunto(s)
Síndrome de Costello , Síndrome de Noonan , Síndrome de Costello/genética , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Síndrome de Noonan/genética , Transducción de Señal , Proteínas ras/genética , Proteínas ras/metabolismo
9.
Mol Genet Metab ; 135(2): 122-132, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35012890

RESUMEN

OBJECTIVE: To assess our hypothesis that brain macrostructure is different in individuals with mucopolysaccharidosis type I (MPS I) and healthy controls (HC), we conducted a comprehensive multicenter study using a uniform quantitative magnetic resonance imaging (qMRI) protocol, with analyses that account for the effects of disease phenotype, age, and cognition. METHODS: Brain MRIs in 23 individuals with attenuated (MPS IA) and 38 with severe MPS I (MPS IH), aged 4-25 years, enrolled under the study protocol NCT01870375, were compared to 98 healthy controls. RESULTS: Cortical and subcortical gray matter, white matter, corpus callosum, ventricular and choroid plexus volumes in MPS I significantly differed from HC. Thicker cortex, lower white matter and corpus callosum volumes were already present at the youngest MPS I participants aged 4-5 years. Age-related differences were observed in both MPS I groups, but most markedly in MPS IH, particularly in cortical gray matter metrics. IQ scores were inversely associated with ventricular volume in both MPS I groups and were positively associated with cortical thickness only in MPS IA. CONCLUSIONS: Quantitatively-derived MRI measures distinguished MPS I participants from HC as well as severe from attenuated forms. Age-related neurodevelopmental trajectories in both MPS I forms differed from HC. The extent to which brain structure is altered by disease, potentially spared by treatment, and how it relates to neurocognitive dysfunction needs further exploration.


Asunto(s)
Mucopolisacaridosis I , Sustancia Blanca , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Mucopolisacaridosis I/patología , Neuroimagen , Sustancia Blanca/patología
10.
Pediatr Neurol ; 126: 65-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740135

RESUMEN

BACKGROUND: Semaphorins and plexins are ligands and cell surface receptors that regulate multiple neurodevelopmental processes such as axonal growth and guidance. PLXNA3 is a plexin gene located on the X chromosome that encodes the most widely expressed plexin receptor in fetal brain, plexin-A3. Plexin-A3 knockout mice demonstrate its role in semaphorin signaling in vivo. The clinical manifestations of semaphorin/plexin neurodevelopmental disorders have been less widely explored. This study describes the neurological and neurodevelopmental phenotypes of boys with maternally inherited hemizygous PLXNA3 variants. METHODS: Data-sharing through GeneDx and GeneMatcher allowed identification of individuals with autism or intellectual disabilities (autism/ID) and hemizygous PLXNA3 variants in collaboration with their physicians and genetic counselors, who completed questionnaires about their patients. In silico analyses predicted pathogenicity for each PLXNA3 variant. RESULTS: We assessed 14 boys (mean age, 10.7 [range 2 to 25] years) with maternally inherited hemizygous PLXNA3 variants and autism/ID ranging from mild to severe. Other findings included fine motor dyspraxia (92%), attention-deficit/hyperactivity traits, and aggressive behaviors (63%). Six patients (43%) had seizures. Thirteen boys (93%) with PLXNA3 variants showed novel or very low allele frequencies and probable damaging/disease-causing pathogenicity in one or more predictors. We found a genotype-phenotype correlation between PLXNA3 cytoplasmic domain variants (exons 22 to 32) and more severe neurodevelopmental disorder phenotypes (P < 0.05). CONCLUSIONS: We report 14 boys with maternally inherited, hemizygous PLXNA3 variants and a range of neurodevelopmental disorders suggesting a novel X-linked intellectual disability syndrome. Greater understanding of PLXNA3 variant pathogenicity in humans will require additional clinical, computational, and experimental validation.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular/fisiología , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/fisiología , Receptores de Superficie Celular/genética , Semaforinas/fisiología , Adolescente , Adulto , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Transducción de Señal/fisiología , Adulto Joven
11.
Ophthalmic Genet ; 43(1): 48-57, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34612139

RESUMEN

BACKGROUND: Costello syndrome (CS) is a multisystem developmental disorder caused by germline pathogenic variants in HRAS resulting in dysregulation of the Ras pathway. A systematic characterization of ophthalmic manifestations provides a unique opportunity to understand the role of Ras signal transduction in ocular development and guide optimal ophthalmic care in CS individuals. METHODS: Visual function, ocular features and genotype/phenotype correlations were evaluated in CS individuals harboring HRAS pathogenic variants, by cross-sectional and retrospective studies, and were recruited through the Costello Syndrome Family Network (CSFN) between 2007 and 2020. RESULTS: Fifty-six molecularly diagnosed CS individuals including 34 females and 22 males, ages ranging from 0.5 to 37 years were enrolled. The most common ophthalmic manifestations in the cross-sectional study were lack of stereopsis (96%), refractive errors (83%), strabismus (72%), nystagmus (69%), optic nerve hypoplasia or pallor (55%) and ptosis (13.7%) with higher prevalence than in the retrospective data (refractive errors (41%), strabismus (44%), nystagmus (26%), optic nerve hypoplasia or pallor (7%) and ptosis (11%)). Visual acuities were found to ranged from 20/25 to 20/800 and contrast sensitivity from 1.6% to 44%. HRAS pathogenic variants included p.G12S (84%), p.G13C (7%), p.G12A (5.4%), p.G12C (1.8%) and p.A146V (1.8%). CONCLUSION: Majority of individuals with CS have refractive errors, strabismus, nystagmus, absent stereopsis, and optic nerve abnormalities suggesting that HRAS and the Ras pathway play a vital role in visual system development. Ptosis, refractive errors and strabismus are amenable to treatment and early ophthalmic evaluation is crucial to prevent long-term vision impairment and improve overall quality of life in CS.


Asunto(s)
Síndrome de Costello , Hipoplasia del Nervio Óptico , Errores de Refracción , Estrabismo , Síndrome de Costello/diagnóstico , Síndrome de Costello/genética , Estudios Transversales , Femenino , Humanos , Masculino , Palidez , Calidad de Vida , Estudios Retrospectivos
12.
Ann Transl Med ; 9(15): 1274, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34532411

RESUMEN

BACKGROUND: Ceroid lipofuscinosis type 8 belongs to a heterogenous group of vision and life-threatening neurodegenerative diseases, neuronal ceroid lipofuscinosis (NCL). Effective therapy is limited to a single drug for treatment of ceroid lipofuscinosis type 2, necessitating animal disease models to facilitate further therapeutic development. Murine models are advantageous for therapeutic development due to easy genetic manipulation and rapid breeding, however appropriate genetic models need to be identified and characterized before being used for therapy testing. To date, murine models of ocular disease associated with ceroid lipofuscinosis type 8 have only been characterized in motor neuron degeneration mice. METHODS: Cln8-/- mice were produced by CRISPR/Cas9 genome editing through the International Mouse Phenotyping Consortium. Ophthalmic examination, optical coherence tomography, electroretinography, and ocular histology was performed on Cln8-/- mice and controls at 16 weeks of age. Quantification of all retinal layers, retinal pigmented epithelium, and the choriocapillaris was performed using images acquired with ocular coherence tomography and planimetry of histologic sections. Necropsy was performed to investigate concurrent systemic abnormalities. Clinical correlation with human patients with CLN8-associated retinopathy is provided. RESULTS: Retinal degeneration characterized by retinal pigment epithelium mottling, scattered drusen, and retinal vascular attenuation was noted in all Cln8-/- mice. Loss of inner and outer photoreceptor segment demarcation was noted on optical coherence tomography, with significant thinning of the whole retina (P=1e-9), outer nuclear layer (P=1e-9), and combined photoreceptor segments (P=1e-9). A global reduction in scotopic and photopic electroretinographic waveforms was noted in all Cln8-/- mice. Slight thickening of the inner plexiform layer (P=0.02) and inner nuclear layer (P=0.004), with significant thinning of the whole retina (P=0.03), outer nuclear layer (P=0.01), and outer photoreceptor segments (P=0.001) was appreciated on histologic sections. Scattered lipid vacuoles were noted in splenic red pulp of all Cln8-/- mice, though no gross systemic abnormalities were detected on necropsy. Retinal findings are consistent with those seen in patients with ceroid lipofuscinosis type 8. CONCLUSIONS: This study provides detailed clinical characterization of retinopathy in adult Cln8-/- mice. Findings suggest that Cln8-/- mice may provide a useful murine model for development of novel therapeutics needed for treating ocular disease in patients with ceroid lipofuscinosis type 8.

13.
Am J Hematol ; 96(9): 1156-1165, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34161616

RESUMEN

Eliglustat, an oral substrate reduction therapy, is approved for eligible adults with Gaucher disease type 1. In the Phase 3 ENGAGE trial of previously untreated adults with Gaucher disease type 1, eliglustat-treated patients had statistically significant improvements in organ volumes and hematologic parameters compared with placebo in the 9-month primary analysis. We report final outcomes by time on eliglustat among all patients who participated in the ENGAGE trial and extension. No patient deteriorated clinically or withdrew due to adverse events; 39/40 patients entered the open-label extension period and 34/40 (85%) remained in the trial until completion or switching to commercial eliglustat after its approval (2.3-6 years). Clinically meaningful improvements in Gaucher disease manifestations were seen in all patients concomitant with reductions in pathological lipid substrate levels (glucosylceramide and glucosylsphingosine). Among patients with 4.5 years of eliglustat exposure, mean spleen volume decreased by 66% (from 17.1 to 5.8 multiples of normal [MN], n = 13), mean liver volume decreased by 23% (from 1.5 to 1.1 MN, n = 13), mean hemoglobin increased 1.4 g/dl (from 11.9 to 13.4 g/dl, n = 12), mean platelet count increased by 87% (from 67.6 to 122.6 × 109 /L, n = 12), median chitotriosidase decreased by 82% (from 13 394 to 2312 nmol/h/ml, n = 11), median glucosylceramide decreased by 79% (from 11.5 to 2.4 µg/ml, n = 11), median glucosylsphingosine decreased by 84% (from 518.5 to 72.1 ng/ml, n = 10), and mean spine T-score increased from -1.07 (osteopenia) to -0.53 (normal) (n = 9). The magnitude of improvement in Gaucher disease manifestations and biomarkers over time was similar among the full trial cohort. Eliglustat was well-tolerated and led to clinically significant improvements in previously untreated patients with Gaucher disease type 1 during 4.5 years of treatment.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Enfermedad de Gaucher/tratamiento farmacológico , Pirrolidinas/uso terapéutico , Adulto , Método Doble Ciego , Inhibidores Enzimáticos/efectos adversos , Femenino , Enfermedad de Gaucher/patología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Tamaño de los Órganos/efectos de los fármacos , Efecto Placebo , Pirrolidinas/efectos adversos , Bazo/efectos de los fármacos , Bazo/patología , Resultado del Tratamiento , Adulto Joven
14.
Am J Hum Genet ; 108(7): 1231-1238, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089648

RESUMEN

Genetic disorders are a leading contributor to mortality in neonatal and pediatric intensive care units (ICUs). Rapid whole-genome sequencing (rWGS)-based rapid precision medicine (RPM) is an intervention that has demonstrated improved clinical outcomes and reduced costs of care. However, the feasibility of broad clinical deployment has not been established. The objective of this study was to implement RPM based on rWGS and evaluate the clinical and economic impact of this implementation as a first line diagnostic test in the California Medicaid (Medi-Cal) program. Project Baby Bear was a payor funded, prospective, real-world quality improvement project in the regional ICUs of five tertiary care children's hospitals. Participation was limited to acutely ill Medi-Cal beneficiaries who were admitted November 2018 to May 2020, were <1 year old and within one week of hospitalization, or had just developed an abnormal response to therapy. The whole cohort received RPM. There were two prespecified primary outcomes-changes in medical care reported by physicians and changes in the cost of care. The majority of infants were from underserved populations. Of 184 infants enrolled, 74 (40%) received a diagnosis by rWGS that explained their admission in a median time of 3 days. In 58 (32%) affected individuals, rWGS led to changes in medical care. Testing and precision medicine cost $1.7 million and led to $2.2-2.9 million cost savings. rWGS-based RPM had clinical utility and reduced net health care expenditures for infants in regional ICUs. rWGS should be considered early in ICU admission when the underlying etiology is unclear.


Asunto(s)
Enfermedad Crítica/terapia , Medicina de Precisión , Secuenciación Completa del Genoma , California , Estudios de Cohortes , Costo de Enfermedad , Cuidados Críticos , Femenino , Hospitales Pediátricos , Humanos , Lactante , Recién Nacido , Masculino , Medicaid , Estudios Prospectivos , Resultado del Tratamiento , Estados Unidos
15.
Ophthalmic Genet ; 42(2): 110-113, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33432855

RESUMEN

Advances in molecular genetics over the past three decades have helped identify a substantial number of genetic variants causing inherited eye diseases that can be identified rapidly by appropriate genetic tests in a clinically useful window. With this progression of knowledge, the roles of genetics and ophthalmology in patient care have become increasingly intertwined, and the necessity for subspecialists in the field of ophthalmic genetics is of paramount importance. As a result of continual medical specialization, technological progress in genetics and knowledge garnered by over a century and a half of cataloguing eye pathology, ophthalmic genetics has become an emerging subspecialty within ophthalmology. By virtue of its rapidly changing advances, genetics and genomics serves a large role within ophthalmology, and subspecialists with the same level of detailed and broad knowledge as any other ophthalmology subspecialty are now required in order to meet the growing needs of the expanding population.


Asunto(s)
Oftalmopatías/genética , Genómica/métodos , Oftalmología/tendencias , Oftalmopatías/diagnóstico , Oftalmopatías/terapia , Humanos
16.
J Pediatr Ophthalmol Strabismus ; 56: e45-e48, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31282960

RESUMEN

Ectopia lentis is displacement of the lens from its original position. It can be inherited or acquired with isolated or systemic findings. The authors describe a 4-year-old girl with isolated ectopia lentis et pupillae caused by pathogenic variants in the ADAMTSL4 gene and discuss the molecular genetic work-up of individuals with ectopia lentis. [J Pediatr Ophthalmol Strabismus. 2019;56:e45-e48.].


Asunto(s)
Proteínas ADAMTS/genética , Algoritmos , ADN/genética , Desplazamiento del Cristalino/genética , Cristalino/diagnóstico por imagen , Mutación , Trastornos de la Pupila/genética , Proteínas ADAMTS/metabolismo , Preescolar , Análisis Mutacional de ADN , Desplazamiento del Cristalino/diagnóstico , Desplazamiento del Cristalino/metabolismo , Femenino , Humanos , Linaje , Trastornos de la Pupila/diagnóstico , Trastornos de la Pupila/metabolismo , Tomografía de Coherencia Óptica
17.
Am J Med Genet A ; 179(9): 1725-1744, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31222966

RESUMEN

Costello syndrome (CS) is a RASopathy caused by activating germline mutations in HRAS. Due to ubiquitous HRAS gene expression, CS affects multiple organ systems and individuals are predisposed to cancer. Individuals with CS may have distinctive craniofacial features, cardiac anomalies, growth and developmental delays, as well as dermatological, orthopedic, ocular, and neurological issues; however, considerable overlap with other RASopathies exists. Medical evaluation requires an understanding of the multifaceted phenotype. Subspecialists may have limited experience in caring for these individuals because of the rarity of CS. Furthermore, the phenotypic presentation may vary with the underlying genotype. These guidelines were developed by an interdisciplinary team of experts in order to encourage timely health care practices and provide medical management guidelines for the primary and specialty care provider, as well as for the families and affected individuals across their lifespan. These guidelines are based on expert opinion and do not represent evidence-based guidelines due to the lack of data for this rare condition.


Asunto(s)
Anomalías Múltiples/genética , Síndrome de Costello/genética , Corazón/fisiopatología , Proteínas Proto-Oncogénicas p21(ras)/genética , Anomalías Múltiples/fisiopatología , Síndrome de Costello/fisiopatología , Síndrome de Costello/terapia , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Manejo de la Enfermedad , Cara/anomalías , Regulación de la Expresión Génica/genética , Genotipo , Mutación de Línea Germinal/genética , Guías como Asunto , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Humanos , Fenotipo
18.
Pediatr Blood Cancer ; 66(8): e27788, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31038288

RESUMEN

Growing teratoma syndrome (GTS) is a condition in which mature teratoma with negative tumor markers arises at the site of a treated malignant germ cell tumor. Pathogenic variants in PTEN have been reported to cause autosomal dominant cancer predisposition syndromes and are associated with germ cell tumors. We report the association of a novel heterozygous pathogenic variant in PTEN and very early onset ovarian germ cell tumor complicated by GTS as well as overgrowth syndrome. This marks the youngest reported patient to have developed GTS following treatment of her primary malignant ovarian germ cell tumor.


Asunto(s)
Heterocigoto , Mutación , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias Ováricas/complicaciones , Neoplasias Ováricas/patología , Fosfohidrolasa PTEN/genética , Teratoma/complicaciones , Preescolar , Femenino , Humanos , Neoplasias de Células Germinales y Embrionarias/etiología , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias Ováricas/etiología , Neoplasias Ováricas/genética , Pronóstico , Síndrome , Teratoma/genética
19.
Mol Genet Metab ; 127(1): 86-94, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30987917

RESUMEN

BACKGROUND: Fabry disease is a rare, X-linked, lifelong progressive lysosomal storage disorder. Severely deficient α-galactosidase A activity in males is associated with the classic phenotype with early-onset, multisystem manifestations evolving to vital organ complications during adulthood. We assessed the ability of 2 low-dose agalsidase beta regimens to lower skin, plasma, and urine globotriaosylceramide (GL-3) levels, and influence clinical manifestations in male pediatric Fabry patients. METHODS: In this multicenter, open-label, parallel-group, phase 3b study, male patients aged 5-18 years were randomized to receive agalsidase beta at 0.5 mg/kg 2-weekly (n = 16) or 1.0 mg/kg 4-weekly (n = 15) for 5 years. All had plasma/urine GL-3 accumulation but no clinically evident organ involvement. The primary outcome was GL-3 accumulation in superficial skin capillary endothelium (SSCE). RESULTS: The mean age was 11.6 (range: 5-18) years and all but one of the 31 patients had classic GLA mutations. In the overall cohort, shifts from non-0 to 0-scores for SSCE GL-3 were significant at years 1, 3, and 5, but results were variable. Plasma GL-3 normalized and urine GL-3 reduced substantially. Higher anti-agalsidase beta antibody titers were associated with less robust SSCE GL-3 clearance and higher urine GL-3 levels. Renal function remained stable and normal. Most Fabry signs and symptoms tended to stabilize; abdominal pain was significantly reduced (-26.3%; P = .0215). No new clinical major organ complications were observed. GL-3 accumulation and cellular and vascular injury were present in baseline kidney biopsies (n = 7). Treatment effects on podocyte GL-3 content and foot process width were highly variable. Fabry arteriopathy overall increased in severity. Two patients withdrew and 2 had their agalsidase beta dose increased. CONCLUSIONS: Our findings increase the limited amount of available data on long-term effects of enzyme replacement therapy in pediatric, classic Fabry patients. The low-dose regimens studied here over a period of 5 years did not demonstrate a consistent benefit among the patients in terms of controlling symptomatology, urine GL-3 levels, and pathological histology. The current available evidence supports treatment of pediatric, classic male Fabry patients at the approved agalsidase beta dose of 1.0 mg/kg 2-weekly if these patients are considered for enzyme replacement therapy with agalsidase beta.


Asunto(s)
Terapia de Reemplazo Enzimático/estadística & datos numéricos , Enfermedad de Fabry/tratamiento farmacológico , Isoenzimas/uso terapéutico , alfa-Galactosidasa/uso terapéutico , Adolescente , Niño , Preescolar , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Piel/química , Piel/patología , Resultado del Tratamiento , Trihexosilceramidas/análisis
20.
Am J Med Genet A ; 179(6): 1091-1097, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30908877

RESUMEN

The neurofibromatoses, which include neurofibromatosis type I (NF1), neurofibromatosis type II (NF2), and schwannomatosis, are a group of syndromes characterized by tumor growth in the nervous system. The RASopathies are a group of syndromes caused by germline mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. The RASopathies include NF1, Noonan syndrome, Noonan syndrome with multiple lentigines, Costello syndrome, cardio-facio-cutaneous syndrome, Legius syndrome, capillary malformation arterio-venous malformation syndrome, and SYNGAP1 autism. Due to their common underlying pathogenetic etiology, all these syndromes have significant phenotypic overlap of which one common feature include a predisposition to tumors, which may be benign or malignant. Together as a group, they represent one of the most common multiple congenital anomaly syndromes estimating to affect approximately one in 1000 individuals worldwide. The subcontinent of India represents one of the largest populations in the world, yet remains underserved from an aspect of clinical genetics services. In an effort to bridge this gap, the First International Conference on RASopathies and Neurofibromatoses in Asia: Identification and Advances of New Therapeutics was held in Kochi, Kerala, India. These proceedings chronicle this timely and topical international symposium directed at discussing the best practices and therapies for individuals with neurofibromatoses and RASopathies.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas Quinasas Activadas por Mitógenos/genética , Neurofibromatosis/etiología , Proteínas ras/genética , Biomarcadores , Manejo de la Enfermedad , Estudios de Asociación Genética/métodos , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Técnicas de Diagnóstico Molecular , Terapia Molecular Dirigida , Neurofibromatosis/diagnóstico , Neurofibromatosis/terapia , Transducción de Señal , Investigación Biomédica Traslacional , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...